液氮制冷的 AlGaN/GaN HEMT 太赫兹探测器阵列特性研究

吴 吴1,2,3, 朱一帆1,3,4, 丁青峰1,2,3, 张金峰1,3, 上官阳1,3, 孙建东1,3, 秦 华1,2,3*

(1. 中国科学院苏州纳米技术与纳米仿生研究所纳米器件与应用重点实验室,江苏苏州 215123;2. 上海科技大学物质科学与技术学院,上海 201210;

中国科学院纳米器件与应用重点实验室 江苏省纳米器件重点实验室, 江苏 苏州 215123;
4. 中国科学技术大学 纳米技术与纳米仿生学院, 安徽 合肥 230026)

摘 要: 为充分发挥 AlGaN/GaN 高电子迁移率晶体管 (High-Electron-Mobility Transistor, HEMT) 太 赫兹探测器阵列的高电子迁移率优势, 文中研究了 HEMT 太赫兹探测器阵列在 77 K 下的探测特性。 使用液氮杜瓦为降温主体搭建了适用于焦平面 (Focal-Plane Array, FPA) 芯片的低温系统, 实现了对焦 平面芯片常温与低温下的对比测试。温度从 300 K 降到 77 K 时, 探测器阵列像元的平均响应度提高近 3 倍, 平均噪声有小幅增大, 340 GHz 时平均噪声等效功率 (Noise Equivalent Power, NEP) 从 45.1 pW/Hz^{1/2} 降低到了 19.4 pW/Hz^{1/2}, 灵敏度提高两倍以上。与硅透镜耦合的单元探测器相比, 阵列像元的灵敏度 提升仍有较大空间。主要是由于各像素点最佳工作电压的不一致, 导致在给定统一工作电压下像元间 的响应度和噪声都表现出较大的离散性, 文中讨论了降低最佳工作电压离散度的可能解决方案。 关键词: 太赫兹探测器; 低温焦平面; 成像芯片; 氮化镓 HEMT 中图分类号: TN386.3 文献标志码: A DOI: 10.3788/IRLA20220225

Research on the characteristics of AlGaN/GaN HEMT terahertz detector array cooled by liquid nitrogen

Wu Hao^{1,2,3}, Zhu Yifan^{1,3,4}, Ding Qingfeng^{1,2,3}, Zhang Jinfeng^{1,3}, Shangguan Yang^{1,3}, Sun Jiandong^{1,3}, Qin Hua^{1,2,3*}

(1. Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;

2. School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;

3. Key Laboratory of Nanodevices of Jiangsu Province, Key Laboratory of Nanodevices and Applications,

Chinese Academy of Sciences, Suzhou 215123, China;

4. School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China)

Abstract: In order to take full advantage of the high electron mobility of the AlGaN/GaN high-electron-mobility transistor (HEMT) terahertz detector array, the detection characteristics of the HEMT terahertz detector array at 77 K are studied. A low temperature system suitable for the focal-plane array (FPA) chip is built based on liquid nitrogen Dewar. Comparison tests of the FPA at room temperature and low temperature is realized. When the temperature is lowered from 300 K to 77 K, the average responsivity of the detector array pixels increase by about 3 times, the average noise increases slightly, and the average noise-equivalent power (NEP) is reduced from

收稿日期:2022-03-29; 修订日期:2022-05-16

基金项目:国家自然科学基金 (61771466, 61775231);中国科学院青年创新促进会 (Y2021089);江苏省重点研发计划 (BE2018005) 作者简介:吴昊,男,硕士生,主要研究方向为太赫兹焦平面芯片。

导师(通讯作者)简介:秦华,男,研究员,博士,特聘教授,主要研究方向为固态太赫兹器件及其系统应用。

45.1 pW/Hz^{1/2} to 19.4 pW/Hz^{1/2} at 340 GHz, i.e., the sensitivity is more than doubled. Compared with the single detector coupled with silicon lens, there is still a lot of room for improving the sensitivity of array pixels. It is mainly due to the inconsistency of the optimal working voltage of each pixel, that leads to a large dispersion of the responsivity and noise between pixels under a given unified working voltage. Possible solutions to the problem of inconsistent optimal working voltage are discussed in this paper.

Key words: terahertz detector; low-temperature focal-plane; imaging chip; gallium nitride HEMT

0 引 言

电磁波谱中频率范围在 0.1-10 THz、介于微波与 红外光之间的太赫兹波和太赫兹成像技术具有许多 优点:与红外成像相比具有更好的穿透性、与微波成 像相比具有更高的分辨率^[1-3]、以及与 X 射线相比对 人体的危害更小等等。因此,太赫兹成像技术在人体 安检等领域拥有广泛的应用场景。肖特基势垒二极 管与天线耦合的高电子迁移率晶体管 (HEMT) 作为 太赫兹探测器都具有高的响应度和低的噪声等效功 率 (NEP)^[4]。但是基于单元探测器逐点扫描成像速度 较慢^[5],探测器的阵列化可大幅提高成像速度。由于 工艺过于复杂,肖特基势垒二极管很难实现大规模的 阵列化,而 HEMT 探测器工艺较为简单,更易于阵列 化,研究高灵敏度的 HEMT 太赫兹探测器阵列对于太 赫兹成像技术的发展具有重要意义。

2015年,中国科学院苏州纳米技术与纳米仿生研 究所在自主研发的基于自混频探测理论的 AlGaN/ GaN HEMT 太赫兹探测器的基础上⁶, 研制出了像素 规模为 32×32 焦平面阵列探测器^[7], 平均响应度可以 达到 217.6 kV/W, 平均 NEP 小于 100 pW/Hz^{1/2}。但只 能实现主动光照下的透射成像,而主动光照下反射成 像需要探测器的 NEP 约等于 1 pW/Hz^{1/2}, 被动成像则 需要探测器的 NEP 降低至 0.1 pW/Hz^{1/2} 量级。目前为 止, AlGaN/GaN HEMT 太赫兹探测器阵列均在常温下 进行工作,根据 HEMT 的特性,在低温下 AlGaN/GaN 二维 子气 (Two-Dimensional Electron Gas, 2DEG) 具有更高 的迁移率,从300 K时的 µ(77 K)=1.88×103 cm-2/(V·s) 增加 到 $\mu_{(300 \text{ K})}=1.54\times10^4 \text{ cm}^{-2}/(\text{V·s})^{[5]}$,从而提高探测器的电 学响应度。同时, HEMT 探测器在低温下具有更低的 热噪声。因此,降低温度有望大幅提高 HEMT 探测器 的灵敏度。为充分发挥 AlGaN/GaN HEMT 太赫兹探 测器阵列的优势,进行场效应晶体管太赫兹探测器阵 列的低温实验具有重要意义。文中利用作者团队研

制的像元规模为 32×32 的 340 GHz 频段 AlGaN/GaN HEMT 太赫兹探测器阵列,搭建一个适用于太赫兹探测器阵列的低温系统,设计样品架将芯片固定在液氮 杜瓦中实现制冷,设计板上芯片封装 (Chips on Board, COB) 电路及现场可编程逻辑门阵列 (Field Programmable Gate Array, FPGA)转接板实现低温-常温之间的 电信号传输。经验证该系统可以将焦平面芯片的温 度降低到 77 K,并在多次降温过程中,焦平面性能保 持稳定。分别在 300 K 与 77 K 下对焦平面进行响应 特性测试,并对实验结果进行具体分析。

1 太赫兹焦平面与低温系统

文中采用的太赫兹焦平面芯片由两部分组成: AlGaN/GaN HEMT 探测器芯片和互补金属氧化物半 导体 (Complementary Metal Oxide Semiconductor, CM-OS) 读出电路芯片。AlGaN/GaN HEMT 探测器阵列 芯片是由1024个单像元构成,每个像元大小为0.4mm× 0.4 mm, 芯片面积为 12.8 mm×2.8 mm。为了提高像元 的有效"感光面积",采用像元内多个探测器串联的方 式,其天线结构如图 1(a) 所示。每个像元是由四组天 线和三个电极组成:栅极天线接地,在源极设置偏压 Vs,响应信号 Vout 从漏极输出。CMOS 读出电路芯片 的单元数也是1024个,每个读出电路单元与探测器 阵列芯片的像元一一对应,读出电路单元的源、漏、 栅极通过基于铟球的倒装焊工艺与探测器阵列像元 的源、漏、栅极对应互连。图 1(b)为焦平面像素坐标 定义图,从下到上依次为第0行到第31行,从左到右 依次为第0列到第31列。CMOS读出电路中的电压 放大器采用了闭环设计,提高了放大器增益的一致 性,电压增益约为 G_v=220^[7]。图 1(c) 为 CMOS 读出电 路单元的等效电路图,从漏极输出的探测器响应信 号和噪声电压谱密度分别为 Vout 与 Vn, 独处电路输 出的信号和噪声电压谱密度分别为 Vout=GvVout 和 $V_{\rm N} = \sqrt{G_{\rm v}^2 V_{\rm n}^2 + V_{\rm n(CMOS)}^2}$,其中 $V_{\rm n(CMOS)}$ 为 CMOS 读出

第 12 期

电路引入的噪声。

低温系统包括制冷系统、光学系统以及电信号传 输系统三部分。使用液氮杜瓦作为制冷装置、使用合 理的 COB 结构以及紫铜样品架作为导热装置共同组 成制冷系统。通过匹配的样品架以及精确的芯片定 位与 TPX 窗口组成太赫兹波的传输光路, 与安装在 杜瓦内部的透镜共同构成光学系统。整个低温系统 的结构如图 2 所示。

电信号传输系统包括传输电路板、传输线以及电 学接口。如图 3 所示为低温系统的电信号传输链

图 1 (a) 340 GHz 焦平面探测器阵列的像素结构图; (b) 焦平面探测器阵列中像素的坐标定义; (c) CMOS 读出电路的等效电路图

Fig.1 (a) Structure diagram of 340 GHz focal plane detector chip single pixel; (b) Coordinate definition of Pixels in FPA; (c) Equivalent circuit diagram of CMOS ROIC

图 2 低温测试系统示意图

Fig.2 Schematic diagram of the low temperature test system

路。链路中的模拟信号包括 CMOS 读出电路输出的 响应信号和噪声。探测器接收太赫兹波的辐射,产生 的响应信号及噪声通过铟柱传输到 CMOS 读出电路 上,然后通过金线传输到 COB 电路上,再通过 SMB 接头进入杜瓦中的同轴线在低温下进行传输,然后再 通过杜瓦顶部的 SMA 接头传输到常温下的同轴传输 线,传输到转接板上的 SMA 接头进入转接板,最后通 过排针进入 FPGA 电路进行模数转换。链路中的数 字信号为 FPGA 发出的时序控制信号,传输方向与模 拟信号相反:首先通过排针进入转接板,再通过牛角 接头在常温下的 24 芯传输线中进行传输,然后通过 杜瓦顶部的 Fischer 接头进入在杜瓦中的低温线进行 传输,通过圆孔排针传到 COB 电路上,最后再通过金 线传输到 CMOS 读出电路芯片。

2 最佳工作电压与最终灵敏度

使用微波源输出功率为 5 dBm, 频率为 9-14 GHz 的信号, 通过 VDI 公司倍频模块频率增加至 27 倍, 最 后通过 WR2.8 的波导喇叭发射, 发射出的太赫兹信号 频率为 243~378 GHz。使用标准太赫兹探测器 Golay Cell(序列号为 No. GC00031)探测器测量太赫兹光源 的输出功率, 在 17 Hz 调制频率下, 响应度为 R_{Golay}= 102.9 kV/W, 按照图 2 连接好测试装置。使用直流电 压源 Yokogawa 为探测器芯片提供工作栅压 V_s, 使用 函数发生器产生 1.25 kHz、占空比 50% 的方波信号对 光源输出功率进行调制, 使用锁相放大器 Signal Recovery 7265A 测试 CMOS 读出电路输出的响应电 压 V_{out}, 频谱分析仪 SR770 测试噪声电压 V_{N。}通过调 节并固定杜瓦位置, 使其中的探测器阵列芯片处于太 赫兹波束的焦点处, 即读出电路输出最强的信号。

选取焦平面对角线上的9个像素点分别测量 300 K 与 77 K 时探测器的响应电压与噪声的比值 SNR=V_{out}/V_n 随外加电压 V_s 的变化曲线。如图 1(a) 所示,外加电压从源极 V。端输入正电压,栅极接地, 则每个像元探测器栅极与源极之间的电压差为 V.s=-V.。每次切换像素点时,将所测像素点移动至光 斑中心处,使得该像素点的响应电压达到最大值。测 试结果表明,300K时每个像素点的最大信噪比在 300 左右, 而 77 K 时每个像素点的最大信噪比在 1200 左右,提高了约3倍。将信噪比最高时所施加的 V、定义为探测器的最佳工作电压 Vso。测试结果表 明,无论在 300 K 还是 77 K 时,不同像素点的 Vso 都 有一定的偏差,从左下角的像素点(0,0)到右上角的 像素点(31,31)依次减小。此外,77K时每个像素点 的 V_{s0} 与 300 K 时相比也有所减小。以像素点 (31,31) 为例,如图4所示,可以看出:300 K时(31,31)的 V_{s0}为3.54 V,77 K时的V_{s0}为3.34 V。插图为300 K 与 77 K 时 其 余 像 素 点 的 V_{s0} 与 像 素 点 (31,31) 的 V_{s0}的差值,可以看出,300 K时 V_{s0}在3.56 V 左右的 像素点居多,77K时Vs0在3.40V左右的像素点居 多。因此,在300K时将焦平面的工作电压设置为 V=3.56 V, 而在 77 K 时工作电压设置为 V=3.40 V。

分别在 3.56 V 与 3.4 V 的外加电压 V_s下测试 焦平面在 300 K 与 77 K 时的 NEP,得到 300 K 时每个 像素点在 340 GHz 时的平均 NEP 为 45.1 pW/Hz^{1/2},而 77 K 时每个像素点平均 NEP 为 19.4 pW/Hz^{1/2},小于 300 K 时的二分之一,即灵敏度比 300 K 时提高了 2 倍左右。图 5 所示为 77 K 时每个像素点 NEP 与 300 K 时对应 NEP 的比值,用于测试最佳工作电压的 9 个像素点用红框标出。

受噪声电压密度限制的噪声等效功率可表示为 NEP=N_v/R_v, N_v 是探测器的噪声电压密度, R_v 是探测器 的电压响应度。分别对探测器的噪声与响应度进行 分析有助于进一步研究影响探测器灵敏度的具体因素。

3 噪声与响应度分析

图 6 为 77 K 时每个像素点的噪声电压与 300 K 时对应像素点噪声电压的比值。可以看出大部分像 素点噪声电压的比值都在 1 左右,降低温度并没有降 低焦平面芯片的输出噪声。同时可以看出,77 K 和 300 K 时每个像素点噪声比值有一定的随机性,主要 是每个像素点最佳工作电压 V_{s0} 不一致导致的,即外 加电压影响探测器的内阻,从而影响探测器的噪声。 从图 4 中的插图可知,300 K 时 V_{s0} 的最大偏差为 0.1 V,而 77 K 时 V_{s0} 的最大偏差为 0.14 V,因此,77 K 时噪声的离散性也会更大。

图 6 77 K 与 300 K 时每个像素点噪声比值 Fig.6 Noise ratio of each pixel at 77 K and 300 K

分别在 3.56 V 与 3.4 V 的外加电压下测试焦平面 在 300 K 与 77 K 时的噪声,得到 300 K 时像素点的平 均噪声电压谱密度为 7.79 μV/Hz^{1/2},77 K 时像素点的 平均噪声电压谱密度为 10.5 μV/Hz^{1/2}。

根据图 1(c) 中焦平面像素的等效电路图可得,像 素点的输出噪声 $V_n = \sqrt{G_v^2 V_n^2 + V_{n(CMOS)}^2}$,包括 HEMT 本身的噪声 V_n 与 CMOS 电路引入的噪声 $V_{n(CMOS)}$ 。 HEMT 的噪声主要是热噪声,热噪声电压密度可以通 过沟道直流电导 G表示为 $N_v = \sqrt{4kT/G}$ 。沟道直流 电导 G 由沟道内 2DEG浓度与电子迁移率共同决定, 经实测, HEMT 器件在外加电压为 V_{s0} 时的沟道直流 电导从 300 K 时 $G_{(300 \text{ K})}=5.9 \times 10^{-2} \text{ mS} 增加到 77 K 时$ $<math>G_{(77 \text{ K})}=4.8 \times 10^{-1} \text{ mS}^{[8-9]}$ 。当所有像素点均在 V_{s0} 下工 作时,300 K 时,HEMT 单元探测器平均噪声电压谱密 度理论值为 $G_v N_{v(300 \text{ K})}$ =3.74 μ V/Hz^{1/2},77 K 时,HEMT 单元探测器平均噪声电压谱密度的理论值减小到 $G_v N_{v(77 \text{ K})}$ =0.8 μ V/Hz^{1/2}。

根据 MOSFET 器件的特性^[10],降低温度会使得 CMOS 电路的电子迁移率提高而载流子浓度下降,但 是载流子浓度下降的幅度大而电子迁移率的提高幅 度小,从而导致 CMOS 电路在 77 K 时的电路中元件 的热噪声 $N_v = \sqrt{4kTR}$ 更大。

CMOS 读出电路在 300 K 和 77 K 时的实测平均 噪声电压谱密度分别为 $V_{n(CMOS,300 K)}$ =4.07 µV/Hz^{1/2} 和 $V_{n(CMOS,77 K)}$ =5.37 µV/Hz^{1/2}。计入 CMOS 的实测噪 声得到焦平面在 300 K 与 77 K 时的理论值分别约 为 $V'_{n(300 K)}$ =5.53 µV/Hz^{1/2}, $V'_{n(77 K)}$ =5.42 µV/Hz^{1/2}。300 K 与 77 K 下实测的焦平面平均噪声电压谱密度均大于 理论值,分析认为主要是不同像素点 V_{s0} 离散所导 致。不同像素点 V_{s0} 的不一致性导致了在统一的外加 电压 V_s 下不同像素点的沟道电导不一致, V_{s0} < V_s 的像 素噪声更大。由图 4 可得, 77 K 时不同像素点 V_{s0} 的 离散度更大, V_{s0} < V_s 的像素点更多, 噪声增大的像素 点也就更多, 同时, CMOS 电路在 77 K 时也引入了更 多的噪声,导致 77 K 时焦平面的平均噪声更大。

单个像元探测器的电压响应度可表示为 R_v= ν/P_0 ,其中 ν 是光响应电压, P_0 为实际照射到该像元 探测器的太赫兹功率。文中使用的光源在频率为 340 GHz 时的功率是 P_t=2.65×10⁻⁶ W, P₀ 与 P_t 的关系 为 $P_0=P_tS_a/S_t$,一个像素点的实际响应度可表示为 $R_v=$ vSt/PtSa。太赫兹光经过离轴抛物面镜聚焦之后会 在焦平面探测器上呈现一个光斑,光斑由许多个接收 到太赫兹光后产生响应的像素点组成,则S_a为光斑 正中心像素点的响应电压, St 为组成光斑的所有像素 点响应电压之和。经过测试计算得到,300K时像素 点的平均响应度为167 kV/W,77 K 时的平均响应度 为 687 kV/W, 比 300 K 时有 3 倍左右的提升。遵循场 效应自混频机制^[8-9], HEMT 探测器的电压响应度 R_v∝(dG/dV_G)/G, 根据上文中的讨论, 理论上来说, 77 K 时 HEMT 探测器的电导与电压响应度都会比 300 K 时提升一个数量级左右,理论值与实验结果不符。将 77 K 时每个像素点的响应度与 300 K 时对应像素点 的响应度相除,得到每个像素点的响应度在77K 时增大的倍数,结果如图 7(a) 所示。从图 7(a) 中可以 看出,右边的像素点响应度增大的倍数更大,这部分 像素点的工作电压 V_s在最佳工作电压 V_{s0} 附近,造成 这种现象主要有两个原因: (1) 如图 4 中插图所示,77 K 时像素点 (0,0) 与 (31,31) 的最佳工作电压相差 0.14 V, 而 300 K 时相差 0.1 V,说明 77 K 时不同像素点 V_{s0} 的离散度更大,导致 77 K 时左侧较多列的像素点 在与 V_{s0} 相差更多的 V_s下工作,从而降低了响应度; (2) 77 K 时信噪比变化速度更快,因此,在 V_s 与 V_{s0} 稍 有差异时,响应度就会下降更多。

无论是 300 K 时还是 77 K 时,不同像素点的响应 度都表现出较大的离散度,每一行像素点的响应度从

图 7 (a) 77 K 与 300 K 时每个像素点响应度比值; (b) 77 K 与 300 K 时相邻像素点响应度平均增大值

Fig.7 (a) Ratio of the responsivity of each pixel at 77 K and 300 K;(b) Average increase in responsivity of adjacent pixels at 77 K and 300 K

左到右都呈现出稳定上升的趋势,图 7(b)为每一行相 邻像素点响应度的平均增大值,可以看出绝大多数行 的增长速度基本相同,300 K 时相邻两个像素点的响 应度相差 2.5 kV/W 左右,77 K 时相邻两个像素点的 响应度相差 10 kV/W 左右。根据图 4 中的结果显示, 每个像素点的 *V*_{s0} 不相同,导致在给芯片提供相同的 *V*_s时,不同像素点的响应度也不相同,*V*_{s0} 最接近 *V*_s 的像素点响应度更大。

4 结 论

基于天线耦合的 AlGaN/GaN HEMT 太赫兹自混 频探测器阵列,笔者搭建了一个适用于太赫兹探测器 阵列的低温系统,验证了该太赫兹焦平面探测器用于 低温太赫兹成像系统的可行性,为将来进一步发展高 速、高灵敏度太赫兹相机提供依据。在77K低温下, 焦平面探测器表现出比 300 K 时更高的电压响应度 和更低的噪声等效功率。由于探测器材料的非均匀 性以及肖特基势垒栅极工艺的不一致性,导致了探测 器阵列中不同像素点的最佳工作电压不一致。在统 一的工作电压下,不同像素点的响应度与 NEP 出现 较大差异,影响了该焦平面探测器的整体性能。针对 这一问题,后续可通过以下三个方面提高探测器阵列 的均匀性:(1)提高材料参数的均匀性和肖特基势垒 栅极工艺的一致性; (2) 设计新的 CMOS 读出电路为 每一个像素动态地施加其最佳工作电压;(3)通过准 确的响应度校准,在上位机软件中进行归一化处理。

参考文献:

[1] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz

communications accelerated by photonics [J]. *Nature Photonics*, 2016, 10(6): 371-379.

- [2] Ho-jin S, Nagatsuma T. Present and future of terahertz communications [J]. *IEEE Transactions on Terahertz Science* and Technology, 2011, 1(1): 256-263.
- [3] Kleine-ostmann T, Nagatsuma T. A review on terahertz communications research [J]. J Infrared Milli Terahz Waves, 2011, 32(2): 143-171.
- [4] Hillger P, Grzyb J, Jain R, et al. Terahertz imaging and sensing applications with silicon-based technologies [J]. *IEEE Transactions on Terahertz Science and Technology*, 2019, 9(1): 1-19.
- [5] Sun J D, Zhu Y F, Feng W, et al. Passive terahertz imaging detectors based on antenna-coupled high-electron-mobility transistors [J]. *Optics Express*, 2020, 28(4): 4911-4920.
- [6] Sun Jiandong, Sun Yunfei, Zhou Yu, et al. Room temperature terahertz detectors based on HEMTs enhanced by bowtie antennas [J]. *Micronanoelectronic Technology*, 2011, 48(4): 215-219. (in Chinese)
- [7] Luo Muchang, Sun Jiandong, Zhang Zhipeng, et al. Terahertz focal plane imaging array sensor based on AlGaN/GaN field effect transistors [J]. *Infrared and Laser Engineering*, 2018, 47(3): 0320001. (in Chinese)
- [8] Sun J D, Sun Y F, Wu D M, et al. High-responsivity, low-noise, room-temperature, self-mixing terahertz detector realized using floating antennas on a GaN-based field-effect transistor [J]. *Applied Physics Letters*, 2012, 100(1).
- [9] Sun J D, Qin H, Lewis R A, et al. Probing and modelling the localized self-mixing in a GaN/AlGaN field-effect terahertz detector [J]. *Applied Physics Letters*, 2012, 100(17): 173513.
- [10] Gaensslen F H, Rideout V L, Walker E J, et al. Very small MOSFET's for low-temperature operation [J]. *IEEE Transactions on Electron Devices*, 1977, 24(3): 218-229.